别再等待了,仅仅一分钟,就能通过我们的【铝合金型材-装饰板准时交付】产品视频探索到无数令人心动的细节和亮点。


以下是:【铝合金型材-装饰板准时交付】的图文介绍

【铝合金型材-装饰板准时交付】



       磷化处理工艺的表调:表面调整剂可以工件表面因碱液除油或酸洗除锈所造成的表面状态的不均匀性,使铝材表面形成大量的极细的结晶中心,从而加快磷化处理工艺反应的速度,有利于磷化处理工艺膜的形成。(1)水质的影响--槽液所用水质中如所含水锈严重、钙镁离子含量较大,会影响表调液的稳定性,槽液配制时可预先添加软水剂以水质对表调液的影响。(2)使用时间--一般表调剂采用的是胶体钛盐,其存在胶体活性,当使用时间较长或所含杂质离子较多时胶体活性会丧失,此时胶体的稳定状态被破坏,槽液沉淀分层,呈絮状,此时必须更换槽液。磷化处理工艺--磷化处理工艺是一种化学与电化学反应形成磷suan盐化学转化膜的过程,所形成的盐化学转化膜称之为磷化处理工艺膜。客车涂装常用的是低温锌系磷化处理工艺液.磷化处理工艺的主要目的是给基体铝材提供保护,在一定程度上防止铝材被腐蚀;用于涂漆前打底,提高漆膜层的附着力与防腐蚀能力。磷化处理工艺是整个前处理工艺相当为重要的一个环节,其反应机理复杂且影响因素较多,因此磷化处理工艺槽液相对于其它槽液的生产过程控制要复杂得多。(1)酸比(总酸度与游离酸度的比值):提高酸比可加快磷化处理工艺反应速度,使磷化处理工艺膜薄而细致,但酸比过高会使膜层过薄,易引起磷化处理工艺工件挂灰;酸比过低,磷化处理工艺反应速度缓慢,磷化处理工艺晶体粗大多孔,耐蚀性低,磷化处理工艺工件易生黄锈。一般来说磷化处理工艺yao液体系或配方不同其酸比大小要求也不同。(2)温度:槽液温度适当提高,成膜速度加快,但温度过高,会影响酸比的变化,进而影响槽液的稳定性,同时膜层晶核粗大,槽液出渣量增大。(3)沉渣量:随着磷化处理工艺反应的不断进行,槽液内的沉渣量会逐渐增多,过量的沉渣会影响工件表面的界面反应,导致磷化处理工艺膜发花、挂灰严重,甚至不成膜,因此槽液必须根据处理的工件量和使用时间适时进行倒槽,进行清渣除淤。(4)亚xiaosuan根NO-2(促进剂浓度)NO-2可加快磷化处理工艺反应速度,提高磷化处理工艺膜的致密性和耐腐蚀性,含量过高时使膜层易出现白点或发彩现象;过低,成膜速度缓慢,磷化处理工艺膜易生黄锈。(5)liu酸根SO2-4:酸洗液浓度过高或水洗控制不好都易导致磷化处理工艺槽液内liu酸根离子增高,过高的liu酸根离子会减慢磷化处理工艺反应速度,使磷化处理工艺膜晶粒粗大多孔,挂灰严重,磷化处理工艺膜的耐蚀性降低。(6)亚铁离子Fe2+:磷化处理工艺溶液中含亚铁离子量过高时,会使常温磷化处理工艺膜防腐能力下降;会使中温磷化处理工艺膜晶粒粗大,表面浮白灰,防腐能力下降;会使高温磷化处理工艺液沉渣量增大,溶液变混浊,同时游离酸度升高。





      6082合金:继6N01合金普及以来,1972年成型的6082合金得到铁路装备制造部门的关注,此合金的强度介于7N01合金与6N01合金强度之间。6082-T5方形管的抗拉强度Rm(喷雾在线淬火)符合底架梁的相应要求。基础实验表明,此合金可以在相应领域实地应用。然而,若要在铁路装备部门广泛推广,仍需要做大量工作。对于30年前曾被视为万无一失的铝制列车的装配节点的疲劳强度,由于列车载重条件改变和结构轻量化,已不适用于当前的新型高速列车,但是这与高寒地区的温度无关,因为零下几十摄氏度对铝合金来说真是“小试锋芒”,算不了什么低温,同时温度越低,铝结构显得越强韧。泡沫铝:高速列车具有轴重轻、频繁加减速和超载运行等特点,要求车体结构在满足强度、刚度、、舒适的前提下尽可能轻量化。显然,超轻泡沫铝所具备的高比强、高比模、高阻尼等性能,与这些要求非常一致。国外对泡沫铝在高速列车上的应用进行了详细地研究与评估,发现填充泡沫铝的钢管吸能本领比空管的高35%~40%,抗弯强度提高40%~50%,从而可使车厢立柱和隔板更坚固,不易坍塌;用泡沫铝填充机车头部缓冲区,可提高吸收冲击能的能力;用10mm厚泡沫铝和薄铝板制造的夹心板比原钢板质量轻50%,而刚度却提高了8倍。目前,中国高铁有关单位正在研究用泡沫铝夹心板制备高铁车厢地板和车门的可行性。为加快解决下一代高铁面临的一系列重大科技问题,铁道部门和中国科学院联合成立了先进轨道交通力学研究中心,在对高速列车材料与结构可靠性、噪声降低理论与技术等方面展开攻关研究,其中有相当一部分内容与超轻泡沫铝有关。随着高速列车运行速度的不断,产生的噪声对乘客乘坐舒适度与周边环境的影响已成为高铁发展的关键制约因素之一。相对于车内噪声,车外噪声对环境的影响更为严重,而高速列车通过隧道或两列高铁在隧道内交汇时产生的混响噪声及由此产生的震动具有相当强的破坏力,如不有效控制,将可能成为高铁的一大发展障碍。为了降低高速列车的噪声污染,必须在经过人口密集区的铁路两侧及隧道内设置屏障。超轻开孔泡沫铝的主要功能之一是吸声,而且该性能可通过改变孔型或声结构调整。此外,泡沫铝还具有良好的防腐、耐气候和加工性能,因此是野外声屏障的良好吸声材料。



我司是一家面向全国客户销售批发: 不锈钢焊管 不锈钢焊管 不锈钢焊管等系列产品。

我们的宗旨是:提供优质铸造产品,让客户满意、放心!

我们的理念是:诚信、专业、务实、共赢。





          铝型材散热器生产工艺:首先贴膜不能直接贴在铬化层上,否则会影响膜的附着力;其次,贴膜后要及时喷涂不能停放时间过长,否则容易导致贴膜脱落,严重时还要重新贴膜;再次是撕膜时要控制流平时间,不能贴膜后马上撕膜,这样会对产品质量带来一定的影响;*后是两种颜色的喷涂顺序要根据具体情况确定,既要考虑到两次固化,又要考虑到遮盖效果。贴膜质量控制:散热器铝型材质量控制中贴膜质量很重要,若贴不好,会导致喷涂困难,如贴膜的张力不大、压紧程度要控制好;对形状复杂的部位要分开贴膜,贴膜后要检查贴膜是否贴牢。否则将会给喷涂带来麻烦。影响喷涂质量。公司生产的铝型材产品均由专业的技术人员严格把关,并拥有专业的生产设备,保证质量问题,客户可放心选购我厂产品。铝型材散热器的贴膜材质:首先要对贴膜材质合理选择,根据散热器铝型材产品的要求、表面处理方式,选择相应的贴膜,同是还要考虑贴膜上的胶对铝型材表面质量的影响。
             缩孔是铝合金压铸件常见的内部缺陷,常出现在产品壁厚较大或者易形成热点的位置。一般来讲,只要缩孔不影响产品的使用性能,都以合格的方式来判定。然而,对于一些重要部位,如汽车发动机汽缸体的冷却水道孔或润滑油道孔,出现缩孔是不允许判定合格的。
某企业的一款铝合金制发动机曲轴箱,采用布勒28000kN冷室压铸机铸造,材质为ADC12合金,成分见表1。铸件毛坯质量为6.3 kg,后工序进行X射线探伤时发现第二个曲轴轴承孔油道出现缩孔,离油道约8 mm,存在较大的漏油风险。据统计,2017年该位置的缩孔报废率为5%,经过一系列的探索,成功地将废品率降低为0.2%。本课题从铝合金压铸件缩孔的形成机理[1-5]和铸造条件两方面出发,分析铸件产生缩孔的原因,寻求改善措施,以期为日后解决铝合金压铸件缩孔问题提供参考。一、铝合金压铸件缩孔形成机理及形态--缩孔形成机理:导致铝合金压铸件缩孔的原因较多,追溯其本源,主要是铝合金从液相向固相转变过程中铝液补缩不足而导致。常见的缩孔原因有:①模温梯度不合理,导致铝液局部收缩不一致。②铝液浇注量偏少,导致料饼薄,增压阶段补压不足。③模具存在热结或尖锐区域。④模具的内浇口宽度不够,面积较小,导致铸件过早凝固,增压阶段压力传递受阻、铝液无法补缩。⑤铸造压力设置过低,补缩效果较差。图1为铝合金铸件缩孔形成的示意图。铸件缩孔形态:缩孔是一种铝合金压铸件乃至铸件常见的内部缺陷,常出现在产品壁厚较大、模具尖角和模温温差较大等区域。图2为某款发动机曲轴箱缩孔形态,缩孔呈似椭圆状,距离轴承油道孔约10 mm,内壁粗糙,无光泽。缩孔区域铸件壁厚较大,约为22 mm;油道孔销子前端无冷却水,模温较高。汽车发动机曲轴的两大轴颈(主轴颈和连杆轴颈)工作载荷较大,磨损严重,工作时必须进行压力润滑。在此情况下,轴颈的油道孔附近若存在缩孔,将会严重影响润滑效果。二、缩孔相关对策:铝合金压铸件产生铸造缺陷的原因有产品本身的结构特征、模具设计得浇注系统及冷却系统设计不合理、工艺参数设计不合理等原因[1~4]。根据常见的铸造缺陷原因以及铝合金铸件缺陷处理流程,探索解决铝合金压铸件厚大部位缩孔的相应对策。前期分析及对策:铸件缩孔的前期分析从容易操作的工艺参数出发,通过现场测量及观察,测得模具内浇口厚度为4 mm,计算的内浇口速度为40 m/s,产品壁厚*薄处为4.6 mm;料饼厚度为25 mm;铸造压力为60MPa。由经验可知,模具设计符合产品的结构特征,模具浇注系统应该不存在增压阶段补缩不足的问题。但是,增压阶段的铝液补缩与料饼厚度和增压压力有直接的关系,合适的料饼厚度与铸造压力才能形成内部组 织致密的铸件,因此,可以怀疑缩孔是由铸造压力偏低和料饼偏薄而导致的。前期铸件缩孔的对策分为两个:①铸造压力由之前的65MPa提高至90MPa;②料饼厚度有原来的25 mm调整为30 mm。采用上述措施后,经过小批量专流验证,缩孔率由5%减低为4.8%,效果不明显,说明工艺参数不是引起铸件缩孔的主因。中期分析及对策:由于引起铸件缩孔的本质原因是铝液凝固时补缩不足而导致,而模具温度分布不均容易导致铝液凝固顺序不合理,从而补缩不足,因此,中期对策分析主要从确保合理的模具温度入手。由产品3D模型可知,铸件缩孔处壁厚为22.6mm,壁厚较大,容易引起较高的模具温度。铝液凝固时,壁厚较大铸件内部铝液由于温度较高,尚处于液相或者固液混合相,而此时内浇口进行补缩的通道可能已经凝固。这样,在增压阶段铸件无法进行铝液补缩,从而有形成缩孔的可能。为确保合适的模具温度,采用热成像仪测得脱模剂喷涂后模具*高温度为272℃(见图3),高于正常的模具喷涂后温度,其他区域模具温度及其分布整体正常。因此,需要降低缩孔处模温。另外,测得此处冷却水孔底部距离模具型腔表面距离较大为20 mm,因为较大的热传递距离会降低模具的冷却效果,所以需要对冷却水孔进行更改。为降低缩孔处模具温度,主要采取3个方法:①改善模具冷却系统。将缩孔附件的冷却水孔深度加深,由距模具表面20 mm变成12 mm,以此快速带走附近模具热量,降低模温;将所有模具冷却水管与水管统一编号,一一对应,防止模具保全时装错,影响冷却效果[5,6]。②降低浇注温度,由675℃变为645℃。③延长缩孔处模具喷涂时间,由2 s变成3 s。实施上述整改措施后,缩孔区域模具喷涂后温度大幅度降低,约为200℃,属于正常范围。缩孔率有4.8%降低到4%,说明此类措施对缩孔具有一定效果,但不能彻底解决此区域的缩孔问题。后期分析及对策:通过前面两次改善,基本保证压铸模具处于理论上的合理状态,即浇注系统设计合理、冷却系统布置合适,工艺参数设计*优。然而,铸件缩孔率仍有4%之多。铸件缩孔处壁厚为22.6 mm,远大于其他部位的壁厚,较大的壁厚可能引起铸件中心凝固时补缩不足,增压结束后此区域还没有完全凝固,继续收缩产生缩孔[7~10],模流分析见图4。因此,如何解决铸件缩孔处的补缩不足,也许才是问题的关键。一般来讲,铸件的补缩时通过料饼→浇道→内浇口→铸件这条路径进行的。由于铸件厚大部位后于内浇口凝固,切断了增压后期的补缩通道,因此无法补缩。
点击查看恒永兴金属材料销售的【产品相册库】以及我们的【产品视频库】